\(\int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\) [439]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 267 \[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 \left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 a^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A-2 A b^2+5 a b B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d \sqrt {\sec (c+d x)}} \]

[Out]

-2/15*(a^2-b^2)*(2*A*b-5*B*a)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(
1/2)*(a/(a+b))^(1/2))*((b+a*cos(d*x+c))/(a+b))^(1/2)*sec(d*x+c)^(1/2)/a^2/d/(a+b*sec(d*x+c))^(1/2)+2/5*A*sin(d
*x+c)*(a+b*sec(d*x+c))^(1/2)/d/sec(d*x+c)^(3/2)+2/15*(A*b+5*B*a)*sin(d*x+c)*(a+b*sec(d*x+c))^(1/2)/a/d/sec(d*x
+c)^(1/2)+2/15*(9*A*a^2-2*A*b^2+5*B*a*b)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x
+1/2*c),2^(1/2)*(a/(a+b))^(1/2))*(a+b*sec(d*x+c))^(1/2)/a^2/d/((b+a*cos(d*x+c))/(a+b))^(1/2)/sec(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.86 (sec) , antiderivative size = 267, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 9, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.257, Rules used = {4117, 4189, 4120, 3941, 2734, 2732, 3943, 2742, 2740} \[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=-\frac {2 \left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )}{15 a^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A+5 a b B-2 A b^2\right ) \sqrt {a+b \sec (c+d x)} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )}{15 a^2 d \sqrt {\sec (c+d x)} \sqrt {\frac {a \cos (c+d x)+b}{a+b}}}+\frac {2 (5 a B+A b) \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{15 a d \sqrt {\sec (c+d x)}}+\frac {2 A \sin (c+d x) \sqrt {a+b \sec (c+d x)}}{5 d \sec ^{\frac {3}{2}}(c+d x)} \]

[In]

Int[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(-2*(a^2 - b^2)*(2*A*b - 5*a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c + d*x)/2, (2*a)/(a + b)]*Sqrt[
Sec[c + d*x]])/(15*a^2*d*Sqrt[a + b*Sec[c + d*x]]) + (2*(9*a^2*A - 2*A*b^2 + 5*a*b*B)*EllipticE[(c + d*x)/2, (
2*a)/(a + b)]*Sqrt[a + b*Sec[c + d*x]])/(15*a^2*d*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Sqrt[Sec[c + d*x]]) + (2*
A*Sqrt[a + b*Sec[c + d*x]]*Sin[c + d*x])/(5*d*Sec[c + d*x]^(3/2)) + (2*(A*b + 5*a*B)*Sqrt[a + b*Sec[c + d*x]]*
Sin[c + d*x])/(15*a*d*Sqrt[Sec[c + d*x]])

Rule 2732

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[2*(Sqrt[a + b]/d)*EllipticE[(1/2)*(c - Pi/2
+ d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2734

Int[Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[a + b*Sin[c + d*x]]/Sqrt[(a + b*Sin[c +
 d*x])/(a + b)], Int[Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 -
 b^2, 0] &&  !GtQ[a + b, 0]

Rule 2740

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/(d*Sqrt[a + b]))*EllipticF[(1/2)*(c - P
i/2 + d*x), 2*(b/(a + b))], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a^2 - b^2, 0] && GtQ[a + b, 0]

Rule 2742

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[(a + b*Sin[c + d*x])/(a + b)]/Sqrt[a
+ b*Sin[c + d*x]], Int[1/Sqrt[a/(a + b) + (b/(a + b))*Sin[c + d*x]], x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[a
^2 - b^2, 0] &&  !GtQ[a + b, 0]

Rule 3941

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Dist[Sqrt[a +
 b*Csc[e + f*x]]/(Sqrt[d*Csc[e + f*x]]*Sqrt[b + a*Sin[e + f*x]]), Int[Sqrt[b + a*Sin[e + f*x]], x], x] /; Free
Q[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 3943

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[Sqrt[d*C
sc[e + f*x]]*(Sqrt[b + a*Sin[e + f*x]]/Sqrt[a + b*Csc[e + f*x]]), Int[1/Sqrt[b + a*Sin[e + f*x]], x], x] /; Fr
eeQ[{a, b, d, e, f}, x] && NeQ[a^2 - b^2, 0]

Rule 4117

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^n/(f*n)), x] - Dist[1
/(d*n), Int[(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1)*Simp[A*b*m - a*B*n - (b*B*n + a*A*(n + 1))*C
sc[e + f*x] - A*b*(m + n + 1)*Csc[e + f*x]^2, x], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && NeQ[A*b - a*B,
0] && NeQ[a^2 - b^2, 0] && LtQ[0, m, 1] && LeQ[n, -1]

Rule 4120

Int[(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))/(Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(
b_.) + (a_)]), x_Symbol] :> Dist[A/a, Int[Sqrt[a + b*Csc[e + f*x]]/Sqrt[d*Csc[e + f*x]], x], x] - Dist[(A*b -
a*B)/(a*d), Int[Sqrt[d*Csc[e + f*x]]/Sqrt[a + b*Csc[e + f*x]], x], x] /; FreeQ[{a, b, d, e, f, A, B}, x] && Ne
Q[A*b - a*B, 0] && NeQ[a^2 - b^2, 0]

Rule 4189

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(d_.))^
(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[A*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
)*((d*Csc[e + f*x])^n/(a*f*n)), x] + Dist[1/(a*d*n), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n + 1)*Simp[
a*B*n - A*b*(m + n + 1) + a*(A + A*n + C*n)*Csc[e + f*x] + A*b*(m + n + 2)*Csc[e + f*x]^2, x], x], x] /; FreeQ
[{a, b, d, e, f, A, B, C, m}, x] && NeQ[a^2 - b^2, 0] && LeQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2}{5} \int \frac {\frac {1}{2} (A b+5 a B)+\frac {1}{2} (3 a A+5 b B) \sec (c+d x)+A b \sec ^2(c+d x)}{\sec ^{\frac {3}{2}}(c+d x) \sqrt {a+b \sec (c+d x)}} \, dx \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d \sqrt {\sec (c+d x)}}-\frac {4 \int \frac {\frac {1}{4} \left (-9 a^2 A+2 A b^2-5 a b B\right )-\frac {1}{4} a (7 A b+5 a B) \sec (c+d x)}{\sqrt {\sec (c+d x)} \sqrt {a+b \sec (c+d x)}} \, dx}{15 a} \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d \sqrt {\sec (c+d x)}}-\frac {\left (\left (a^2-b^2\right ) (2 A b-5 a B)\right ) \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {a+b \sec (c+d x)}} \, dx}{15 a^2}+\frac {\left (9 a^2 A-2 A b^2+5 a b B\right ) \int \frac {\sqrt {a+b \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx}{15 a^2} \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d \sqrt {\sec (c+d x)}}-\frac {\left (\left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {b+a \cos (c+d x)}} \, dx}{15 a^2 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (9 a^2 A-2 A b^2+5 a b B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {b+a \cos (c+d x)} \, dx}{15 a^2 \sqrt {b+a \cos (c+d x)} \sqrt {\sec (c+d x)}} \\ & = \frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d \sqrt {\sec (c+d x)}}-\frac {\left (\left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}\right ) \int \frac {1}{\sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}}} \, dx}{15 a^2 \sqrt {a+b \sec (c+d x)}}+\frac {\left (\left (9 a^2 A-2 A b^2+5 a b B\right ) \sqrt {a+b \sec (c+d x)}\right ) \int \sqrt {\frac {b}{a+b}+\frac {a \cos (c+d x)}{a+b}} \, dx}{15 a^2 \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}} \\ & = -\frac {2 \left (a^2-b^2\right ) (2 A b-5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right ) \sqrt {\sec (c+d x)}}{15 a^2 d \sqrt {a+b \sec (c+d x)}}+\frac {2 \left (9 a^2 A-2 A b^2+5 a b B\right ) E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right ) \sqrt {a+b \sec (c+d x)}}{15 a^2 d \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \sqrt {\sec (c+d x)}}+\frac {2 A \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{5 d \sec ^{\frac {3}{2}}(c+d x)}+\frac {2 (A b+5 a B) \sqrt {a+b \sec (c+d x)} \sin (c+d x)}{15 a d \sqrt {\sec (c+d x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 4.24 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.75 \[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {2 \sqrt {a+b \sec (c+d x)} \left ((a+b) \left (9 a^2 A-2 A b^2+5 a b B\right ) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} E\left (\frac {1}{2} (c+d x)|\frac {2 a}{a+b}\right )+\left (a^2-b^2\right ) (-2 A b+5 a B) \sqrt {\frac {b+a \cos (c+d x)}{a+b}} \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),\frac {2 a}{a+b}\right )+a (b+a \cos (c+d x)) (A b+5 a B+3 a A \cos (c+d x)) \sin (c+d x)\right )}{15 a^2 d (b+a \cos (c+d x)) \sqrt {\sec (c+d x)}} \]

[In]

Integrate[(Sqrt[a + b*Sec[c + d*x]]*(A + B*Sec[c + d*x]))/Sec[c + d*x]^(5/2),x]

[Out]

(2*Sqrt[a + b*Sec[c + d*x]]*((a + b)*(9*a^2*A - 2*A*b^2 + 5*a*b*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*Elliptic
E[(c + d*x)/2, (2*a)/(a + b)] + (a^2 - b^2)*(-2*A*b + 5*a*B)*Sqrt[(b + a*Cos[c + d*x])/(a + b)]*EllipticF[(c +
 d*x)/2, (2*a)/(a + b)] + a*(b + a*Cos[c + d*x])*(A*b + 5*a*B + 3*a*A*Cos[c + d*x])*Sin[c + d*x]))/(15*a^2*d*(
b + a*Cos[c + d*x])*Sqrt[Sec[c + d*x]])

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(3580\) vs. \(2(297)=594\).

Time = 15.72 (sec) , antiderivative size = 3581, normalized size of antiderivative = 13.41

method result size
parts \(\text {Expression too large to display}\) \(3581\)
default \(\text {Expression too large to display}\) \(3603\)

[In]

int((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x,method=_RETURNVERBOSE)

[Out]

2/15*A/d/((a-b)/(a+b))^(1/2)/a^2*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(5/2)/(cos(d*x+c)+1)*(14*E
llipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)+4*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c
)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2*sec(d*
x+c)-18*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)-4*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+
csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b
^2*sec(d*x+c)+3*((a-b)/(a+b))^(1/2)*a^3*sin(d*x+c)+9*((a-b)/(a+b))^(1/2)*a^3*tan(d*x+c)+2*EllipticE(((a-b)/(a+
b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(c
os(d*x+c)+1))^(1/2)*b^3+7*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos
(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b+2*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(
d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1
/2)*a*b^2-9*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1
/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^2*b-2*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x
+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a*b^2-18*E
llipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3*sec(d*x+c)-9*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c))
,(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*a^3+9*Elliptic
E(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))
^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*sec(d*x+c)^2+2*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a
+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)^2-9*
(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d
*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3*sec(d*x+c)^2+18*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x
+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a^3*sec(d*
x+c)+4*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/
(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*b^3*sec(d*x+c)+9*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2
)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^3+9*
((a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)*sec(d*x+c)+((a-b)/(a+b))^(1/2)*a*b^2*tan(d*x+c)*sec(d*x+c)+4*((a-b)/(a+b)
)^(1/2)*a^2*b*sin(d*x+c)+3*((a-b)/(a+b))^(1/2)*a^3*cos(d*x+c)*sin(d*x+c)-2*((a-b)/(a+b))^(1/2)*b^3*tan(d*x+c)*
sec(d*x+c)+4*((a-b)/(a+b))^(1/2)*a^2*b*tan(d*x+c)-((a-b)/(a+b))^(1/2)*a*b^2*tan(d*x+c)-9*EllipticE(((a-b)/(a+b
))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(co
s(d*x+c)+1))^(1/2)*a^2*b*sec(d*x+c)^2-2*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^
(1/2))*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*a*b^2*sec(d*x+c)^2+7*(1/(a+b)*
(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc
(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*b*sec(d*x+c)^2+2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*
x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b^2*sec(d*x+c)^2
)+2/3*B/d/((a-b)/(a+b))^(1/2)/a*(a+b*sec(d*x+c))^(1/2)/(b+a*cos(d*x+c))/sec(d*x+c)^(3/2)/(cos(d*x+c)+1)*((1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)
+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*cos(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+
c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*b^2*cos(d*x+c)+(1/(a
+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)
+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a^2*cos(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*(1/(cos(d*x+
c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*a*b*cos(d*x+c)+2*(1/
(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a
-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a
+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*b^2+2*(1/(a+b)*(b+a*cos(d*x
+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(co
s(d*x+c)+1))^(1/2)*a^2-2*(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d
*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b+((a-b)/(a+b))^(1/2)*a^2*cos(d*x+c)*sin(d*
x+c)+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-
(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b*sec(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*El
lipticE(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*b^2*sec(d*
x+c)+(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*EllipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-
(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a^2*sec(d*x+c)-(1/(a+b)*(b+a*cos(d*x+c))/(cos(d*x+c)+1))^(1/2)*El
lipticF(((a-b)/(a+b))^(1/2)*(-cot(d*x+c)+csc(d*x+c)),(-(a+b)/(a-b))^(1/2))*(1/(cos(d*x+c)+1))^(1/2)*a*b*sec(d*
x+c)+((a-b)/(a+b))^(1/2)*a^2*sin(d*x+c)+2*((a-b)/(a+b))^(1/2)*a*b*sin(d*x+c)+((a-b)/(a+b))^(1/2)*a*b*tan(d*x+c
)+((a-b)/(a+b))^(1/2)*b^2*tan(d*x+c))

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.15 (sec) , antiderivative size = 519, normalized size of antiderivative = 1.94 \[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\frac {\sqrt {2} {\left (-15 i \, B a^{3} - 3 i \, A a^{2} b + 10 i \, B a b^{2} - 4 i \, A b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) + \sqrt {2} {\left (15 i \, B a^{3} + 3 i \, A a^{2} b - 10 i \, B a b^{2} + 4 i \, A b^{3}\right )} \sqrt {a} {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right ) - 3 \, \sqrt {2} {\left (-9 i \, A a^{3} - 5 i \, B a^{2} b + 2 i \, A a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) + 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) - 3 \, \sqrt {2} {\left (9 i \, A a^{3} + 5 i \, B a^{2} b - 2 i \, A a b^{2}\right )} \sqrt {a} {\rm weierstrassZeta}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, {\rm weierstrassPInverse}\left (-\frac {4 \, {\left (3 \, a^{2} - 4 \, b^{2}\right )}}{3 \, a^{2}}, \frac {8 \, {\left (9 \, a^{2} b - 8 \, b^{3}\right )}}{27 \, a^{3}}, \frac {3 \, a \cos \left (d x + c\right ) - 3 i \, a \sin \left (d x + c\right ) + 2 \, b}{3 \, a}\right )\right ) + \frac {6 \, {\left (3 \, A a^{3} \cos \left (d x + c\right )^{2} + {\left (5 \, B a^{3} + A a^{2} b\right )} \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + b}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{45 \, a^{3} d} \]

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="fricas")

[Out]

1/45*(sqrt(2)*(-15*I*B*a^3 - 3*I*A*a^2*b + 10*I*B*a*b^2 - 4*I*A*b^3)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 -
 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a) + sqrt(2)*(15*I*
B*a^3 + 3*I*A*a^2*b - 10*I*B*a*b^2 + 4*I*A*b^3)*sqrt(a)*weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*
a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a) - 3*sqrt(2)*(-9*I*A*a^3 - 5*I*B*a^2*b
 + 2*I*A*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, weierstrassPInve
rse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d*x + c) + 3*I*a*sin(d*x + c) + 2*b)/a)
) - 3*sqrt(2)*(9*I*A*a^3 + 5*I*B*a^2*b - 2*I*A*a*b^2)*sqrt(a)*weierstrassZeta(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(
9*a^2*b - 8*b^3)/a^3, weierstrassPInverse(-4/3*(3*a^2 - 4*b^2)/a^2, 8/27*(9*a^2*b - 8*b^3)/a^3, 1/3*(3*a*cos(d
*x + c) - 3*I*a*sin(d*x + c) + 2*b)/a)) + 6*(3*A*a^3*cos(d*x + c)^2 + (5*B*a^3 + A*a^2*b)*cos(d*x + c))*sqrt((
a*cos(d*x + c) + b)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d)

Sympy [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A + B \sec {\left (c + d x \right )}\right ) \sqrt {a + b \sec {\left (c + d x \right )}}}{\sec ^{\frac {5}{2}}{\left (c + d x \right )}}\, dx \]

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))**(1/2)/sec(d*x+c)**(5/2),x)

[Out]

Integral((A + B*sec(c + d*x))*sqrt(a + b*sec(c + d*x))/sec(c + d*x)**(5/2), x)

Maxima [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="maxima")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(5/2), x)

Giac [F]

\[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int { \frac {{\left (B \sec \left (d x + c\right ) + A\right )} \sqrt {b \sec \left (d x + c\right ) + a}}{\sec \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

[In]

integrate((A+B*sec(d*x+c))*(a+b*sec(d*x+c))^(1/2)/sec(d*x+c)^(5/2),x, algorithm="giac")

[Out]

integrate((B*sec(d*x + c) + A)*sqrt(b*sec(d*x + c) + a)/sec(d*x + c)^(5/2), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\sqrt {a+b \sec (c+d x)} (A+B \sec (c+d x))}{\sec ^{\frac {5}{2}}(c+d x)} \, dx=\int \frac {\left (A+\frac {B}{\cos \left (c+d\,x\right )}\right )\,\sqrt {a+\frac {b}{\cos \left (c+d\,x\right )}}}{{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

[In]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(5/2),x)

[Out]

int(((A + B/cos(c + d*x))*(a + b/cos(c + d*x))^(1/2))/(1/cos(c + d*x))^(5/2), x)